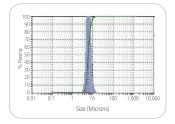
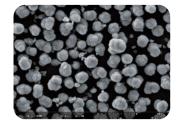
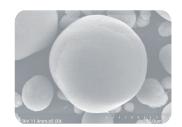


Laminar Continuous Taylor Reactors

Applications

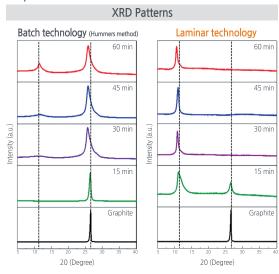

Manufactured by

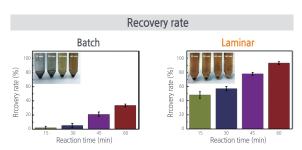



Co-Precipitation

Li - Battery (NiMnCo)(OH)₂

Division	Conventional System	Laminar Reactor	
Reaction Time (h)	10	3	
Particle Size (µm)	5~20	1~20	
Span ([D ₉₀ -D ₁₀]/D ₅₀)	0.5	0.2	
Tap Density (g/mL)	2.1	2.2	





Exfoliation

Graphene Oxide

Comparison Table

Division	Conventional System	Laminar Reactor
Production process	Batch	Continuous
Process Temp. (℃)	30	20
Recovery Rate (%)	70	95 ↑
Reaction Time (h)	Max 120	1 ↓
Production Cost (USD/g)	500	50

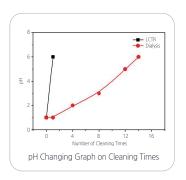
Purification

OLED

Division	Conventional system	Laminar Reactor
Purity (%)	99.99	99.99
Manufacturing method	Batch	Continuous
Process temp. (C)	Max 650	20~80
Process pressure (Torr)	10 ² ~10 ⁶	Atmosphere
Purification time	12~24	1
Improvement of OLED life time (%)	-	13-20%

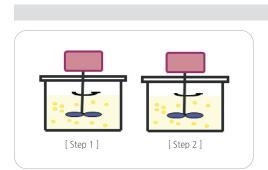
TPPA

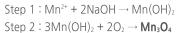
Division (ppm)	Raw Material	Laminar Reactor	Recovery Rate (%)
Na	162,675	2,610	98.40
Mg	6,083	683	88.76
Al	774	37	95.16
K	997,767	8,907	99.11
Ca	4,010	1,689	57.88
Fe	1,710	661	61.31


Tryptophan

Division	Batch	Laminar Reactor
Recovery rate (%)	60	75
Purity (%)	95	98
Particle size (إلله)	30	50 ↑

Surface Treatment


Carbon Material


Division	Dialysis Process	Laminar Reactor
Diagram	51.	Cleaning (Continuous)
Processing Time (h)	168	1.66
Consumption of water (L)	70	4
Production Process	Batch	Continuous
P ^H values after washing	6	6

- * Saving the processing time by 99%
- * Reduce the consumption of water by 94.2%

Crystallization

Reducing Taylor reactor one of the two step

Step 1: $3Mn^{2+} + 6NaOH + 2O_2 \rightarrow Mn_3O_4$

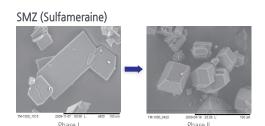
Metal Powder

Mn₃O₄

20	Volume (%)	101
1		_90
‡		_80
‡		_70
‡		_60
0		50
‡		_40
1		_30
‡		_20
‡		10
0.01 0.	1 1.0 10.0 100.0	1000.0
0.01	Particle Diameter (um.)	1000.0

Division	Conventional System	Laminar Reactor
Production Process	Batch	Continuous
Particle Size (#m)	70.93	7.19
Span ([D ₉₀ -D ₁₀]/D ₅₀)	3.418	1.726
Reaction Time (h)	2	0.6

Sol-Gel


SiO₂ / Nano

40
600
30
Continuous Reactor

It was impossible to produce uniformed particle due to the delay time on nucleation. Nucleation and crystal growth occurs in each reactor.

Phase Transformation / Pharmaceutical

Division	Conventional System	Laminar Reactor
Reaction Time (h)	100	4
Agitation speed (rpm)	3000	900
Process Temp. (℃)	10	10
Phase Transformation	Impossible	Possible

Isomer separation / Petrochemical

DMT(Dimethyl Terephthalate) - Melt Crystallization

- ···· (- ···· - · · · · · · · · · · · ·			
Division	Melting point(℃)	Boiling point (℃)	Purity (%)
MFB (Methyl-P-formylbenzoate)	59~63	265	52.8
DMT (Dimethyl Terephthalate)	142	288	45.0

After Before

		r drity (70)
Division	Conventional System	Laminar Reactor
Raw Material	4:	5.0
1 Times	67.4	98.2
2 Times	92.4	-

Paper

• Emulsion polymerisation

Catalytic

Photochemical

• Electrochemical

• Enzymatic reactions

Cell cultivation

Precipitation

• Focculation for wastewater treatment

• Dynamic tangential and membrane filtration

• Microparticle classification

• Liquid—liquid extraction

• Exfoliation

(Kataoka et al., 1995; Wei et al., 2000)

(Cohen and Maron, 1990)

(Haim and Pismen, 1994; Forney and Pierson, 2003)

(Coeuret and Legrand, 1981)

(losilevskii et al., 1993; Giordano et al., 2000b)

(Haut et al., 2003)

(Jung et al., 2000; Judat et al., 2004)

(Grohmann et al., 1981)

(Schwille et al., 2002; Lee and Lueptow, 2004)

(Ohmura et al., 2005)

(Baier et al., 2000; Forney et al., 2002)

(Woo Seok Yang, 2015, Carbon)

For more information, or to discuss your requirements, please contact us on 01954 232 776

For more information, please contact:

analytik (UK and Ireland Distributor)

2 Cygnus Business Park, Middle Watch, Swavesey, Cambridge, CB24 4AA

T: +44 (0)1954 232 776 E: info@analytik.co.uk W: analytik.co.uk

Manufactured by

Purity (%)