PRODUCTION OF NANOEMULSION ADJUVANTS **USING HIGH SHEAR FLUID PROCESSING**

BY: DR. YANG SU AND STEVEN MESITE

Microfluidics International Corporation, An IDEX Material Processing Technologies Unit 90 Glacier Dr. Suite 1000, Westwood, MA 02090, USA

Introduction	Case Study	Power Consumption to Achieve A Particle Size at		
Vaccine Adjuvants	Production of Squalene Nanoemulsion Adjuvant	A Given Flow Rate		
 Vaccine adjuvants enhance the efficacy of vaccines. 	 Microfluidizer[®] technology: 	 Power = Pressure x Number of Passes x Flow Rate 		
		Dentiale Cite Dreeses Number		

Valve 1

- Most new adjuvants are emulsions or liposomes with particle sizes below 200 nm.
 - Effective: Enhance both Th1, Th2 and MHC responses^{1,2}
 - Well tolerable
 - Biodegradable

Key Production Requirements & Challenges

- Process efficiency.
- Sterile production.
- Repeatability & scalability.

Microfluidizer[®] Technology

- Fixed geometry interaction chamber
- Constant pressure profile
- High pressure homogenization:
- Variable geometry valve
- Dynamic pressure profile
- Constant volume

Pressure Profile

Method

Oil-in-water emulsion formulation with 4 wt% squalene oil and 1 wt% surfactant.

		Particle Size	Process	Number		
		(nm)	Pressure (psi)	of Passes		
Homog	enizer	178	30,000	5		
Microfluidizer®		182	10,000	2		
HPH consumes as much as 7.5 times power to						
achieve similar particle sizes.						
Uniformity of Distribution						
0.3						
Xe 0.25				→HPH 10k psi		
<u>ک</u> 0.2	Q			◆HPH 20k psi		
		· · · · · · · · · · · · · · · · · · ·		↔HPH 30k psi		
disp				➡MF 10k psi		
) 0.1				MF 20k psi		
0.05				➡MF 30k psi		
0						
	1	2 3	4 5			

- High pressure is used to pump multi-phase fluids through the microchannels of an interaction chamber, exposing the fluids to high shear.
- Velocities of over 400 m/s in micron channels result in shear rates of up to 10⁸ s⁻¹.
- Parallel arrays of identical microchannels ensure linear scalability to tens of liters per minute.
- Pre-emulsion was prepared using a rotor-stator mixer (Quadro HVO).
- Parameters varied during processing: pressure and number of passes through the processer.
- Particle size analyzed using a dynamic light scattering instrument (Malvern Zetasizer Nano-S).

Number of Passes

- Microfluidizer[®] processors are well suitable for manufacturing nanoemulsion vaccine adjuvants.
- Microfluidizer[®] processor consumed 7.5 times less

Percent Increase in Average Particle Size

power than the high pressure homogenizer.

- Microfluidized emulsions were **18-55% smaller** \bullet than the homogenized emulsions with the same energy input.
- Emulsions created by Microfluidizer[®] were **17-91%** less polydisperse than that created by high pressure homogenizer.
- The standard deviations of Microfluidized emulsions (0.1-2.6) were much lower than that of the homogenized emulsions (3.8-14.8).

1. Vaccine adjuvants review, <u>www.innivogen.com</u>, 2011 2. Subunit vaccine delivery, Springer, 2015

www.microfluidicscorp.com

